
International Journal of Scientific & Engineering Research, Volume 3, Issue 4, April-2012 1
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

An Improved Approach for Spatial Domain
Lossless Image Data Compression Method by

Reducing Overhead Bits
Mahmud Hasan, Kamruddin Md. Nur

Abstract— Lossless image compression techniques are used in digital imaging where large amount of data is to be stored without
compromising the image quality. The volume of data that can be compressed using lossless image compression schemes is usually much
lesser than that of its lossy compression counterparts. Yet, however, lossless compression algorithms are popular in a number of particular
image data storage sectors. To meet the increasing demand of large amount of high quality image data storing, numerous algorithms were
developed during last few decades featuring lossless image compression and covering various aspects of data compression approaches.
Spatial domain lossless image compression methods are popular in most respects since their computational time is comparatively much
lesser. In this paper, we focus on a spatial domain image compression technique that uses simple arithmetic operations in order to achieve
the specified goal. We revealed that the mentioned algorithm is not always as advantageous as other spatial domain compression systems
and often suffers from overhead transmission of unnecessary image data. The thorough investigation over the technique is reported along
with the discovered mathematical bound at which the algorithm of interest is failed to achieve the desired target. Finally, to reduce the
overhead obtained as a result of algorithmic trouble, an improved mechanism is suggested so that both the transmission time and storage
space requirements using this method is facilitated.

Index Terms— Bits Per Pixel (BPP), Block Matrix, Block Processing, Computational Overhead, Inter-Pixel Redundancy, Run Length
Coding, Spatial Domain Lossless Image Compression.

——————————  ——————————

1 INTRODUCTION

ECENT digital imaging applications have observed co-
pious invention in the field of image compression as the
importance of preserving image data is being important

day by day. Diverse ideas regarding this issue have been de-
veloped, still we suffer from choosing a suitable compression
method for industry applications as computational cost of the
compression stuff matters. A few standards like JPEG and
JPEG-2000 are being used in today's industry applications
where achieved compression ratio is important than its rela-
tive computational cost [1]. However, due to quality-
compression trade-off, these standards fail to provide users
with the most desirable image compression criterion- higher
compression ratio with higher quality assurance [2].

Lossless image compression techniques, on the other hand,

provides us with mentionable compression ratio and unaf-
fected image quality. Such compression methods, that use
simple arithmetic calculations in geometric domain or spatial
domain [3,4,5], reduce the computational complexity too in a
notable extent. Thus, spatial domain lossless image compre -
ssion techniques deserve acute significance in digital imaging
world. All of such algorithms attempt to reduce the inter-pixel
redundancy of an image discovering the fact- since the value
of any given pixel can be reasonably predicted from the value

of its neighbors, the information carried by individual pixels is
relatively small [6].

In this paper, our prime focus is on a spatial domain loss-

less compression algorithm by Syed & Mehdi [7]. This algo-
rithm performs lossless compression, although, often, it has to
suffer from a large unnecessary amount of bits due to compu-
tational overhead. We investigated the reason and suggested
necessary modification required to improve the algorithm.
Comparative results have also been taken into account.

2 RELATED STUDY

In digital image compression terminologies, overhead bits
refer to the extra amount of bits required by a specific
algorithm to compress an image [8]. For example, let us
suppose, we have an image compression algorithm that can
reduce 500 bits from an image of 1000 bits. It is then regarded
that the compression ratio achieved by this algorithm is
(1000÷500) for this particular image. Again, using the same
algorithm, if another image of 800 bits results in 1000 bits after
compression, there presents 200 overhead bits. It is possible
since a good number of compression algorithms keep some
non-image-information about the image in order to reduce its
Bits Per Pixel (bpp). Whenever this non-image-information
along with compressed-image-information becomes larger
than original-image-information, an overhead occurs.
Consequently, an image of n bits needs to be represented by m
bits after compression; where m>n.

Preserving non-image-information in order to reduce total

R

————————————————
 Mahmud Hasan is currently teaching at the Dept. of Computer Science &

Engineering as a full-time lecturer in Stamford University Bangladesh. E-
mail: hasanpoet@gmail.com

 Kamruddin Md. Nur is currently teaching at the Dept. of Computer
Science & Engineering as Assistant Professor in Stamford University Ban-
gladesh. E-mail: kamruddin.nur@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 2
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

original-image-information is an age-old technique [9]. A
commonly known algorithm for image data compression is
Run Length Encoding (RLE) where a stream of same gray
level pixels are encoded as (x,y) representing x as pixel-run
and y as gray value [2,6]. In this case, x is not an original-
image-information, rather, it is non-image-information to
finally achieve compressed-image-information. A number of
image compression algorithms are developed using such
concepts as in [10, 11, 12]. There is another compression
algorithm school that does not directly use RLE and preserve
non-image-information. Rather, it preserves some non-image-
information regarding a local m×n block so that this
information helps decide the exact pixel value during
decoding [7]. The algorithm we are going to investigate is
categorized into this class of algorithms.

3 FOCUSED ALGORITHM

The algorithm we are examining has been developed by Syed
& Mehdi [7]. It requires an image to be divided into a number
of m×n blocks where the standard value of m and n is 4. The
specific application has freedom to choose m and n other than
4. The algorithm then looks for the maximum and minimum
pixel values MAX and MIN within this m×n block and
calculates MAX-MIN. The block header preserves 8-bits MIN
and a 3-bits coding-information that tells how many bits are
required to represent MAX-MIN. Then MIN is subtracted
from all pixel values of m×n block and each is encoded by k
bits, where k is the number denoted by 3-bits coding-
information. Figure 1 illustrates the focused algorithm. The
embedding and extraction procedure as given by Syed &
Mehdi [7] is shown in the following subsections.

3.1 Encoding Steps
The encoding steps of the algorithm proposed by Syed &
Mehdi [7] are shown below –

Step1: Select m and n for whole image.

Step2: Take m×n non-overlapping block of image.

Step3: Find the difference of Min and Max value in selected

 m×n block in X.

Step4: Add 11 bits header (8 bits for Min value of block, and
 3 bits dedicated the no. of bits required to represent
 X value’ in Y bits).

Step5: Subtract each pixel from Min value of a block and

 store in separate Y bits of every pixel in new m×n
 block.

3.2 Decoding Steps
The decoding steps of the algorithm proposed by Syed &
Mehdi [7] are shown below –

Step1: Parse the header and find out block size m and n.

Step2: Find the Min (8 bit) value for each block.

Step3: Parse another 3 bits which represent the no. of (Y)

 bits required for each pixel value.

Step4: Read next Y bits, add its value to Min and regenerate

 the actual value of pixel. Repeat this step for all pix -
 els in a block.

Step5: Repeat the above steps for whole image and

 regenerate the original image.

4 OVERHEAD ANALYSIS
It should now be clear that according to our focused algorithm
any m×n block of an image contains a header of 11 bits, where
MIN consists of 8 bits and coding-information comprises the
left 3 bits. If these 3 bits denote 1002 (i.e. 410), then every pixel
of this block is encoded using 4 bits. This technique works
efficiently as long as the coding-information remains less than
8 bits. But let us consider a situation where MAX-MIN results
in an integer to represent which at least 8 bits are required.
Then a typical 4×4 block has to be embedded as 11 bits+16×8
bits, whereas the non-compressed-block was embedded by
only 16×8 bits. This situation is possible whenever MAX-
MIN≥128. Figure 2 shows a practical phenomenon where such
occurrence is illustrated.

Although the spatial smoothness of an image is common,

it is not guaranteed that at least two pixels of an m×n block
cannot differ by a factor of 128 or more. Rather, it happens
very frequently. Statistical evidence shows that for gray scale

Fig. 1. Example Block of Focused Algorithm

Fig. 2. An Example of Overhead-Block

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 3
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

images, there are at least 5.76% 4×4 blocks where MAX-
MIN≥128. For color images, however, the percentage is less-
only 2.10%. Whatever the statistical percentage of overhead
blocks, surely, for each overhead block, the focused algorithm
needs to preserve some extra bits.

5 IMPROVED SUGGESTION
With a view to modifying our focused algorithm, we propose
to keep some information regarding the overhead blocks and
leave those blocks without embedding. Considering a stan-
dard block size 4×4 for 512×512 dimensional images, we find
16,384 blocks that can be treated as a 128×128 dimensional
matrix as shown in Figure 3.

We require each row of this 128×128 matrix now starts with

a 128 bit binary sequence where each 1 indicates an overhead
block at that position. Since the overhead blocks are not em-
bedded, 11 bits from each overhead block can be discarded.
The CODEC ought now to use a trace variable that will keep
checking the 128 bit block-row-header and whenever it finds a
1 in that row-header, it supposes no 11-bits block header for
block of that position. For example, if 70th bit of 128 bits block-
row-header contains a 1, for 70th block, the decoder does not
look for 11-bits block header.

The improved encoding steps are organized as follows –

Step1: Prepend a 128 bit extra header in front of each block-

 row, all bits are reset.

Step2: Take a m×n non-overlapping block of image as done

 in focused algorithm (standard size of m and n is 4).

Step3: Find the difference of Min and Max value in selected

m×n block in X.

Step4: If Max-Min≥128 i.e. overhead block, set the corre-
 sponding bit in 128 bit header. Keep no 11 bit block-
 header.

Step5: Subtract each pixel from Min value of a block and
 store in separate Y bits of every pixel in new m×n
 block.

The improved decoding steps are organized as follows –

Step1: Read first 128 bits, find which are overhead

 blocks.

Step2: Except the overhead blocks, take 11 bits block-header
 and follow the decoding steps described in
 section 3.2.

The comparative performance in the next section of this

paper statistically proves that using 128 bits at the beginning
of each block-matrix reduces total image information more
than the focused algorithm does. However, these 128 bits can
be run-length encoded if necessary.

6 COMPARATIVE PERFORMANCE ANALYSIS

A study over 12,82,048 blocks of 4×4 dimension shows that
73,819 blocks cause overheads. In other words, there are 5.76%
blocks for which using 11 bits header of the focused algorithm
is meaningless. These 11 bits are redundant for each overhead-
block resulting in n×11 bits that are non-image-information,
where n is the number of overhead-blocks. Table 1 shows a
portion of our study for some famous test images.

TABLE 1
RESULT OF OVERHEAD BLOCK CALCULATION

Test Image Total 4×4
Blocks

Overhead
Blocks

Total
Overhead Bits

Baboon 16384 1926 21186

Lena 16384 3319 36509

Cameraman 16384 6598 72578

Iris 16384 2360 25060
.

Fig. 3. An 128×128 Matrix, each element is a 4×4 Pixel Block

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 4
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

Our implementation does not preserve 11 bits header for

the overhead-blocks as done in focused algorithm. Instead,
after dividing a 512×512 image into 128×128 block-matrix, it
uses 128 bit long overhead-block-information at the beginning
of each of 128 rows. Thus, our improved technique has to use
128×128 bits or 16384 bits instead of 21186, 36509, 72578 and
25060 as overhead bits for the images Baboon, Lena, Camera-
man and Iris respectively. A portion of our obtained results is
given in Table 2.

As the proposed modification can reduce the overhead bits by

a notable extent, the total number of bits after compression by the
proposed algorithm is less than that of obtained by focused algo-
rithm. Table 3 shows another comparative study.

Therefore, if an 8-bit image of 512×512 dimension results in

x bits (x≤2097152) after being compressed by the focused algo-
rithm, our statistical evidence proves that, still, x bits contain p
overhead bits, where p is statistically greater than 16384. Thus,
preserving 16384 bits instead of p bits results in more com-
pressed image data. However, as 16384 bits required by our
modification is kept in 128 different parts, each part can be run
length coded as mentioned before.

7 CONCLUSION
In this paper, we investigated a novel image compression
technique propsed by Syed & Mehdi [7] and found redundant
bits inherently preserved by their technique. Then we sug-
gested an improvement over their algorithm which results in
more compression ratio as discussed in our comparative per-
formance analysis. Moreover, further research can be con-
ducted in order to reduce the total number of compressed bits
by applying run-length coding on the extra 128 bit binary in-
formation suggested by our improvement.

REFERENCES
[1] Gregory K. Wallace, “The JPEG Still Picture Compression Standard”, IEEE

Transactions on Consumer Electronics, 1991.
[2] Ralf Steinmetz and Klara Nahrstedt, “Multimedia: Computing,

Communications and Applications”, 1st Edition, Pearson Education
Inc. ISBN: 81-7808-319-1, 2005.

[3] Suneetha Agarwal and Seshagiri Gurram, “Image Compression us-
ing Simple Arithmetic Operations”, International Conference on Com-
putational Intelligence and Multimedia Applications (ICCIMA), India, pp.
58-62, 2007.

[4] Sunil Kumar Pattanik, K. K. Mahapatra and G. Panda, “A Novel
Lossless Image Compression Algorithm using Arithmetic Modulo
Operation”, IEEE International Conference on Cybernetics & Intelligence
Systems (CIS) and Robotics Automation & Mechatronics (RAM) (CIS-
RAM 2006), Thailand, pp. 234-238, 2006.

[5] Komal Ramteke and Sunita Rawat, “Lossless Image Compression
LOCO-R Algorithm for 16 bit Image”, 2nd National Conference on In-
formation and Communication Technology (NCICT), pp. 11-14, 2011.

[6] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing”, 2nd
Edition, Pearson Prentice Hall. ISBN: 81-7758-168-6, 2005.

[7] Syed Ali Hassan and Mehdi Hussain, “Spatial Domain Lossless Image Data
Compression Method”, International Conference of Information and Com-
munication Technologies, 2011.

[8] Tinku Acharya and Ajoy K. Ray, “Digital Image Processing: Principles and
Applications”, John Wiley & Sons, Inc. ISBN: 10 0-471-71998-6, 2005.

[9] M. Nelson and J. L. Gailly, “The Data Compression Book”, 2nd ed. New
York: M & T Books, 1996.

[10] Al-Wahaib and M. S. KokSheikh Wong, “A Lossless Image Compression
Algorithm Using Duplication Run Length Coding”, IEEE Conference on
Network Application Protocols and Services, pp. 245-250, 2010.

[11] J P Cookson and G R Thoma, “X-Ray Image Compression using Run
Length Coding”, Journal of Medical Systems, Volume: 12, Issue: 4, pp. 201-
209, 1988.

[12] Samir Kumar Bandyopadhyay, Tuhin Utsab Paul and Avishek Raychoud-
hury, “Image Compression using Approximate Matching and Run
Length”, International Journal of Advanced Computer Science and Applications
(IJACA), Volume: 2, Issue: 6, pp. 117-121, 2011.s

TABLE 2
RESULT OF OVERHEAD BIT REDUCTION BY PROPOSED

MODIFICATION

Test Image

Overhead Bits
by

Focused
Algorithm

Overhead Bits
by

Proposed
Modification

Overhead
Bits

Reduced

Baboon 21186 16384 4802

Lena 36509 16384 20125

Cameraman 72578 16384 56194

Iris 25060 16384 8676

TABLE 3
COMPARATIVE PERFORMANCE ANALYSIS

Test Image
Total

Bits

Total Bits After

Compression

by

Focused

Algorithm

Total Bits

After

Compression

by

Proposed

Modification

Baboon 2097152 1797568 1792766

Lena 2097152 1282528 1262403

Cameraman 2097152 1181344 1125150

